THE FIRST 1, 3-DIPOLAR ADDITION TO A BENZOTHIOPHENE S-OXIDE

P.GENESTE⁺, R.DURAND and D.PIOCH

Laboratoire de Chimie Organique Physique Appliquée ECOLE NATIONALE SUPERIEURE DE CHIMIE DE MONTPELLIER 8, rue de l'Ecole Normale - 34075 MONTPELLIER France

Summary : New isoxazolines have been obtained by 1,3-dipolar cycloaddition of mesitonitrile oxide on the sulfone and sulfoxide of 3-methyl-benzo{b}thiophene.

HUISGEN'S work (1) has been followed by numerous studies on the 1,3-dipolar cycloaddition reactions. However, only a few have dealt with the reactivity of the carbon carbon double bond of thiophene or benzo{b}thiophene series (2-8). In the latter series mention was made of the addition of nitrones to the corresponding sulfone and its 3-methyl homolog.

The availability of sulfoxides in this series (9) has led us to compare the influence of the sulfoxide and sulfone functions on the reactivity of the C-C double bond. Since the sulfoxide of benzo{b}thiophene itself cannot be isolated (9), we have studied its 3-methyl homolog.

Addition of mesitonitrile oxide $\underline{2}$ to the sulfoxide $\underline{1}$ (2:1 molar ratio) in refluxing benzene for 30 hours gave a 90% yield of two isomeric sulfoxides (1:1 molar ratio) : syn $\underline{3}$ (mp = 178°C) and anti $\underline{4}$ (mp = 213°C) $3-(2,4,6-\text{trimethyl-phenyl-8b-methyl-{1}benzothieno}$ $\{2,3-d\}$ isoxazoline ; the remaining 10% was starting material. These two products were separated by preparative TLC on silica using ether/acetone (95/5). Both mass spectrum (m/e = 225) and elemental analysis are in agreement with the molecular formula $C_{19}H_{19}NO_2S$. The syn and anti structures were assigned by comparing ¹H NMR spectra with those obtained in previous cases (9,10). The 3a proton in the <u>anti</u> isomer absorbs at lower field(5.15 δ) than in the <u>syn</u> isomer(4.78 δ). Refluxing of <u>3</u> in THF under acidic conditions converts it into a mixture of <u>3</u> and <u>4</u> (1:1 molar ratio) as characterised by the two singlets at 5.15 and 4.78 δ . The stereochemistry of the addition is <u>cis</u> with no orienting effect of the S0 group.

Oxidation of $\underline{3}$ or $\underline{4}$ by hydrogen peroxide in acetic acid gives the sulfone $\underline{5}$ (mp = 223°C) (mass spectrum (m/e = 341) and elemental analysis in agreement with $C_{19}H_{19}NO_3S$).

The NMR results (Table 1) are in agreement with this structure. In addition the sulfone can be obtained by direct addition of the dipole $\underline{2}$ to the sulfone of 3-methylbenzo{b}thiophene $\underline{8}$.

In order to confirm the regioselectivity of the addition, that the oxygen atom of the dipole is linked to the C-3 of the benzo{b}thiophene ring, the mixture of $\underline{3}$ and $\underline{4}$ was hydrogenated in benzene in mild conditions (70°C,10atm) on a Co0,MoO₃/Al₂O₃ catalyst (11,12).

The products <u>6</u> and <u>7</u> were isolated : <u>6</u> is the deoxygenated sulfur compound as confirmed by the mass spectrum (m/e = 309), elemental analysis, and the ¹H NMR spectrum; <u>7</u> (m/e = 293) gave an elemental analysis corresponding to $C_{19}H_{19}NS$ with a broad signal (9.10-9.906) in NMR, which can be attributed to the proton of a stable imine which could not be hydrolysed under various conditions.

	Table 1						
Products	$8bCH_3(s)$	0-CH ₃ (s)	p-CH ₃ (s)	3aH(s)	m-H(s)	4H benzo(1)	H imine(1)
<u>3</u>	2.15	2.15	2.31	4.78	6.93	7.5-7.9	
4	1.95	2.38	2.28	5.15	6.94	7.5-7.8	
5	2.07	2.20	2.30	4.93	6.90	7.5-7.9	
6	1.90	2.20	2.27	5.06	6.90	7.1-7.6	
<u>7</u>	2.08	2.18	2.34		6.94	7.2-7.9	9.1-9.9

On the basis of these results it is evident that the reactions are regioselective in accordance with a mechanism in which the intermediate is probably the more stable diradical (13). We are currently examining the additions of 1,3-dipoles to other derivatives in this series with various substituents in order to correlate the observations with theoretical calculations (CNDO/2,EHT).

REFERENCES

- 1.- cf for instance, for reviews
 - a) R.HUISGEN, Proc.Chem.Soc.(London), 357 (1961) ; b) Angew.Chem.Int.Ed.Engl., 2,565 (1963) ;
 - c) J.Org.Chem.,<u>41</u>,403 (1976).
- 2.- K.KABZINSKA, J.T.WROBEL, Bull.Acad.Polonaise des Sciences, 22, 843 (1974).
- 3.- L.BELTRAME, M.G.CATTANIA, W.REDAELLI, G.ZECCHI, J.Chem.Soc.Perkin II, 706 (1977).
- 4.- K.TORSSEL, Acta Chem.Scand.B30,353 (1976).
- 5.- B.LAUDE, M.SOFIAOUI, J.ARRIAU, J.Heterocyclic Chem., 14, 1183 (1977).
- 6.- F.SAUTER, G.BUYUK, Monatsh.Chem., 105, 254 ; 550 (1974).
- 7.- F.SAUTER, G.BUYUK, U.JORDIS, Monatsh.Chem., 105, 869 (1974).
- 8.- P.CARAMELLA,G.CELLERINO, P.GRUNANGER, F.M.ALBINI, M.R.CELLERINO, Tetrahedron, 34, 3545 (1978).
- 9.- P.GENESTE, J.GRIMAUD, J.L.OLIVE, S.N.UNG, Bull.Soc.Chim.France, 271 (1977).
- 10.- M.S.EL FAGHI EL AMOUDI, P.GENESTE, J.L.OLIVE, Tetrahedron Letters, 999 (1978).
- 11.- P.GENESTE, P.AMBLARD, M.BONNET, P.GRAFFIN, J.Catalysis, (1979) in press.
- 12.- P.GENESTE, M.BONNET, C.FROUIN, D.LEVACHE, J.Catalysis, in press.
- 13.- R.A.FIRESTONE, Tetrahedron, 33, 3009 (1977).

(Received in France 25 September 1979)